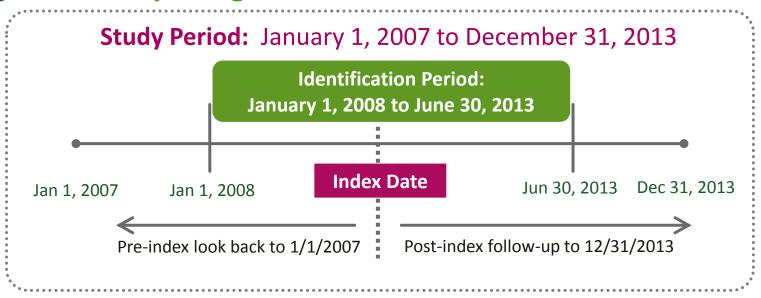
Ems D¹, Racsa P¹, Anderson C², Gregory F², Worley K¹

1. Comprehensive Health Insights, Humana Inc., Louisville, KY; 2. Humana Pharmacy Solutions, Humana, Inc. Louisville, KY.

Risk of liver transplant in treated versus untreated hepatitis C


Background

Liver failure is a major health issue, resulting in over 700,000 deaths annually. In 2014, there were 5,723 liver transplants in the United States (US), with total per patient billed charges of over \$739,000.2 Chronic hepatitis C virus (HCV) is the primary cause of liver failure leading to transplantation.^{1,2} A recent study estimated 2.9% of patients achieving a sustained virologic response (SVR), 5.2% of those experiencing recurrent HCV after previous response, and 20.7% of non-responders had a liver transplant or died from any cause.³ Achieving SVR, which has improved with the advent of newer treatment options, has been shown to reduce the risk of liver-related morbidity/mortality, all-cause mortality, and health care utilization.³⁻⁷ Although there is evidence linking poor adherence with lower SVR and increased hospitalizations and costs, there is a gap in published literature examining the association between medication adherence and risk of liver transplant.^{8,9} In addition, the impact of HCV treatment on total costs of liver transplantation is not well documented.

Objective

To quantify liver transplant risk and mean total costs in treated versus untreated patients diagnosed with hepatitis C virus (HCV).

Figure 1. Study Design

Methods

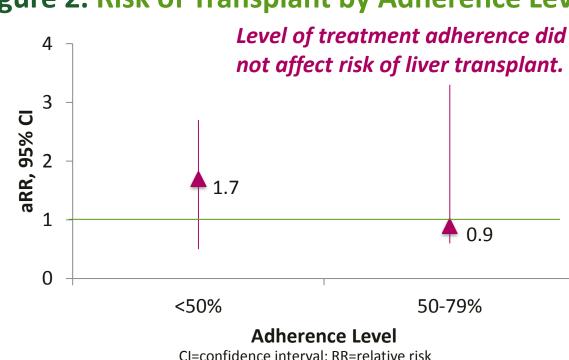
Study Design: Observational, historical cohort study.

Data Source: Pharmacy and medical claims, and enrollment data, from the Humana Research Database, which is derived from approximately 17.1 million members nationwide across commercial, Medicare Advantage and prescription drug plans.

Inclusion and Exclusion Criteria:

- To be included, patients had to meet one of the following criteria between January 1, 2008 and June 30, 2013 (**Figure 1**):
- At least one prescription claim for HCV treatment (boceprevir, telaprevir, ribavirin or PEG-interferon/interferon, alone or in combination)
- At least one HCV diagnosis (ICD-9/CPT codes: V0262, 07041, 07044, 07051, 07054, 07070, 07071, G8461, G8463, 4150F, 4153F) if not treated
- The index date was defined as either the date of liver transplant (ICD-9/CPT codes: 50.50, 50.51, 50.59, 47135, 47136), or date of first observed HCV treatment or diagnosis (if not treated).
- Patients were then excluded for any of the following reasons:
 - Aged <19 or >89
- Not fully insured by a commercial or Medicare plan, i.e., prescription drug coverage
- Hepatitis B virus (HBV) diagnosis (ICD-9/CPT codes: 070.20-070.23, 070.30-070.33, V02.61)

Outcomes and Statistical Analyses:


- Cox proportional-hazard regression approximated adjusted relative risk (aRR) of transplant in treated versus untreated patients, controlling for age, gender, geographic location, Deyo-Charlson Comorbidity Index, RxRisk-V Score, and pre-index medical and pharmacy costs.
- Results were also reported by treatment adherence level based on proportion of days covered (≥80%, 50-79%, <50%).
- Mean total costs (plan- and patient-paid) were assessed over the observation period using generalized linear models with log link and gamma distribution.

Results

Table 1. Baseline Characteristics

	HCV			HCV and Liver Transplant		
	Untreated n=40,338	Treated n=2,708	P value	Untreated n=318	Treated n=48	P value
Age, years, Mean (SD)	58.4 (11.7)	53.8 (10.3)	<0.0001	57.0 (7.5)	55.2 (6.3)	0.12
Male Gender, No. (%)	23,447 (58.1%)	1,723 (63.6%)	<0.0001	234 (73.6%)	35 (72.9%)	0.92
*Race/Ethnicity, No. (%)			<0.0001			0.42
Caucasian	19,275 (65.0%)	1,124 (70.0%)		192 (78.4%)	20 (69.0%)	
African American	4,960 (16.7%)	267 (16.6%)		25 (10.2%)	5 (17.2%)	
Hispanic	713 (2.4%)	38 (2.4%)		6 (2.5%)	0 (0.0%)	
Other/Unknown	4,699 (15.9%)	177 (11.0%)		22 (9.0%)	4 (13.8%)	
Plan Type, No. (%)			<0.0001			0.01
Commercial	10,691 (26.5%)	1,102 (40.7%)		73 (23.0%)	19 (39.6%)	
MAPD	29,647 (73.5%)	1,606 (59.3%)		245 (77.0%)	29 (60.4%)	
Rx Risk-V Comorbidity Score, Mean (SD)	5.0 (3.1)	4.3 (2.9)	<0.0001	4.7 (4.0)	3.1 (3.4)	0.01
Deyo-Charlson Comorbidity Index, Mean (SD)	1.0 (2.0)	0.7 (1.9)	<0.0001	2.8 (3.3)	1.8 (2.7)	0.05
Pre-Index All-Cause Healthcare Costs, Mean (SD)	\$3,657 (35,015)	\$7,073 (56,943)	<0.0001	\$18,156 (141,411)	\$7,823 (21,392)	0.61
Pre-Index Eligibility, months, Mean (SD)	11.9 (18.0)	9.7 (16.2)	<0.0001	13.4 (20.4)	9.5 (19.9)	0.22
Post-Index Eligibility, months, Mean (SD)	14.0 (14.4)	15.1 (13.4)	0.0002	19.0 (17.0)	17.1 (16.7)	0.46
*Medicare only SD=standard deviation						

Figure 2. Risk of Transplant by Adherence Level

CI=confidence interval; RR=relative risk Reference group was ≥80% adherence level

Table 2. Risk of Transplant by Treatment Status

	Total N	Liver Transplant, N (%)	aRR of Liver Transplant	P value (adjusted)
Treated	2,708	48 (1.77)	1.01	0.56
Untreated	40,338	318 (0.79)	1.00	

There were no significant differences in liver transplant risk according to treatment status.

• Patient factors such as genotype, SVR, disease severity, reasons for treatment discontinuation

and other factors that could influence outcomes could not be obtained or controlled for.

Variable post-index periods were allowed to maximize sample size, introducing potential bias

• Limitations common with claims analyses (missing values, inability to capture all relevant

confounders) pertain to this study; a prescription claim does not equate to adherence.

The study time period excluded newer DAA agents approved since June 2013. A follow-up

study is needed to determine if newer DAA regimens would have a different impact on

Table 3. Cost Differences Between Treated and Untreated Patients Receiving a Liver Transplant

Total mean healthcare costs were significantly higher for liver transplant patients who received HCV treatment vs. untreated.

	ransplanted, Untreated n=318	ransplanted, Treated n=48	P value	
	Mean	Mean	Unadjusted	Adjusted
Total Healthcare Costs	\$141,616	\$237,949	0.001	<.0001
Medical	\$122,362	\$165,393	0.10	0.03
HCV Related	\$78,842	\$122,138	0.04	0.03
Non-HCV Related	\$43,520	\$43,254	0.91	0.83
Pharmacy	\$20,999	\$72,557	<.0001	<.0001
Index (1st) HCV Product	-	\$28,162	-	-
Non-index (2nd) HCV Product	-	\$7,810	-	-
Non-index, Non-HCV Product	\$20,999	\$36,585	0.002	<.001

toward those with longer follow-up.

transplant risk or costs.

Conclusions

- Despite adjusting for covariates, there was no evidence that HCV treatment reduced the risk of liver transplant, suggesting that treated patients may be sicker and have unmeasured confounders.
- Within the treated group, there was no change in risk of liver transplant by level of treatment adherence, underscoring the need for further evidence on liver transplant outcomes.
- HCV-treated patients who required a liver transplant incurred significantly higher total healthcare costs than those who did not receive treatment for HCV prior to transplant.

- References 1. Vilarinho S, Lifton RP. Liver Transplantation: from inception to clinical practice. *Cell*. Sep 2012;150(6):1096-1099.
- 2. Bentley TS. 2014 U.S. organ and tissue transplant cost estimates and discussion. Milliman Research report. 2014. Available at http://www.milliman.com/insight/research/ health/2014-U S -organ-and-tissue-transplant-cost-estimates-anddiscussion. Accessed on March 3, 2014.

Limitations

- 3. Morgan T, Ghany M, Kim H, Snow K, Shiffman M, De Santo J, et al. Outcome of sustained virological responders with histologically advanced chronic hepatitis C. Hepatology. September 2010;52(3):833-844.
- 4. Manos MM, Darbinian J, Rubin J, et al. The effect of hepatitis C treatment response on medical costs: a longitudinal analysis in an integrated care setting. Journal of managed care pharmacy: JMCP. Jul-Aug 2013;19(6):438-447. 5. Singal, A, Volk M, Jensen D, Di Bisceglie A, Schoenfeld P. A sustained viral response is associated with reduced liver-related morbidity and mortality in patients with hepatitis C virus. Clin Gastroenteral Hepatol. March 2010;8(3):280-288.
- 6. Backus L, Boothroyd D, Phillips B, Belperio P, Halloran J, Mole L. A sustained virologic response reduces risk of all-cause mortality in patients with hepatitis C. Clin Gastroenteral Hepatol. June 2011;9(6):509-516.
- 7. Younossi Z, Singer M, Mir H, Henry L, Hunt S. Impact of interferon free regimens on clinical and cost outcomes for chronic hepatitis C genotype 1 patients. J Hepatol. Mar 2014;60(3):530-537.
- 8. Lo Re III V, Amorosa V, Localio A, O'Flynn R, Teal V, Dorey-Stein Z, et al. Adherence to hepatitis C virus therapy and early virologic outcomes. Clin Infect Dis. Jan 2009;48(2):186-193. 9. Mitra D. Davis K, Beam C, Medjedovic J, Rustgi V. Treatment patterns and adherence among patients with chronic hepatitis C virus in a US managed care population. Value in Health. Nov 2010;13:479-486.

20th Annual International Meeting

Humana.

GCHJB6KEN